Cross: Efficient Low-rank Tensor Completion

نویسنده

  • Anru Zhang
چکیده

The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this article, we propose a framework for low-rank tensor completion via a novel tensor measurement scheme we name Cross. The proposed procedure is efficient and easy to implement. In particular, we show that a third order tensor of Tucker rank-(r1, r2, r3) in p1-by-p2-by-p3 dimensional space can be recovered from as few as r1r2r3+r1(p1−r1)+r2(p2−r2)+r3(p3−r3) noiseless measurements, which matches the sample complexity lower-bound. In the case of noisy measurements, we also develop a theoretical upper bound and the matching minimax lower bound for recovery error over certain classes of low-rank tensors for the proposed procedure. The results can be further extended to fourth or higher-order tensors. Simulation studies show that the method performs well under a variety of settings. Finally, the procedure is illustrated through a real dataset in neuroimaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient tensor completion: Low-rank tensor train

This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...

متن کامل

Efficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm

Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and spaceefficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the FrankWolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular, FW’s...

متن کامل

Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion

Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms o...

متن کامل

Reweighted Low-Rank Tensor Completion and its Applications in Video Recovery

This paper focus on recovering multi-dimensional data called tensor from randomly corrupted incomplete observation. Inspired by reweighted l1 norm minimization for sparsity enhancement, this paper proposes a reweighted singular value enhancement scheme to improve tensor low tubular rank in the tensor completion process. An efficient iterative decomposition scheme based on t-SVD is proposed whic...

متن کامل

Beyond Low Rank: A Data-Adaptive Tensor Completion Method

Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.01129  شماره 

صفحات  -

تاریخ انتشار 2016